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ABSTRACT

Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium

aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are

candidate refractive secondary concentrator materials for high temperature solar

propulsion applications. However, thermo-mechanical reliability of these components in

severe thermal environments during the space mission sun/shade transition is of great

concern. Simulated mission tests are important for evaluating these candidate oxide

materials under a variety of transient and steady-state heat flux conditions, and thus

provide vital information for the component design. In this paper, a controlled heat flux

thermal shock test approach is established for the single crystal oxide materials using a

3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture

behavior and failure mechanisms of these oxide materials are investigated and critical

temperature gradients are determined under various temperature and heating conditions.

The test results show that single crystal sapphire is able to sustain the highest temperature

gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as

compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium

oxide.

INTRODUCTION

Recently refractive secondary solar concentrator systems have been developed for

solar thermal power and propulsion applications [1]. A well-designed refractive
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secondary concentrator system possesses higher solar concentration ratio and efficiency,

and better flux tailoring within the heat receiver cavity, as compared to the conventional

hollow reflective parabolic concentrator systems [1, 2]. Single crystal oxides such as

yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG),

magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary

concentrator materials. However, the refractive concentrator system will experience high

temperature and thermal cycling in the solar thermal engine during the space mission

sun/shade transition and therefore thermal mechanical reliability of the oxide components

in the severe thermal environments is of great concern. Finite element analysis shows that

for a cubic ZrO2-Y2O3 single crystal concentrator system, a peak temperature of 1800°C

at the tip of the concentrator flux extractor and a temperature difference up to 1500°C

across the 25.4 mm region of the concentrator-extractor interface may be established

during the heat-up cycles [3].

The purpose of this paper is to establish appropriate test techniques to evaluate the

thermo-mechanical stability of four different candidate single crystal oxide materials,

under space mission thermal gradient and heat flux conditions. Thermal stress resistance,

thermal fracture behavior and failure mechanisms of these single crystal are investigated

under steady-state and transient heat flux conditions. Critical temperature gradients and

corresponding absorbed power densities imposed on the crystals to cause failure, are

determined for various temperature and heating conditions that these materials are

expected to experience in refractive concentrator applications.

EXPERIMENTAL MATERIALS AND METHODS

Materials

Single crystal oxides including 20%Y2O3-doped cubic zirconia (Y2O3-ZrO2),

yttrium aluminum garnet (Y3Al5O12 or YAG), magnesium oxide (MgO) and sapphire

(Al 2O3) were obtained from a commercial source (ONYX Optics, Inc., 6551 Sierra lane,

Dublin, California). The materials were machined into 25.4 mm diameter circular disk

specimens  (thickness 1 mm), and 12.7 mm diameter cylindrical specimens (length 12.7
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mm or 25.4 mm). The surfaces of the disk and cylinder specimens were parallel to the

major crystallographic planes of these crystals, namely, (100) plane for ZrO2-Y2O3 and

MgO, (111) plane for YAG, and (0001) plane for Al2O3 (sapphire). These surface plane

directions of the specimens were thus consistent with the optical axes of the actual

components. For the ZrO2-Y2O3 and MgO materials, 12.7× 12.7× 12.7 mm cube

specimens with the (100) orientation surfaces were also used. The crystallographic

orientations of the specimen surfaces were confirmed using X-ray Laue diffraction.

Specimen surfaces were polished to a mirror finish on all sides before each test.

Thermal Expansion and Room Temperature Hardness Tests

Thermal expansion experiments were carried out on all the single crystals, in air,

using a high temperature dilatometer system. The 25.4 mm-long cylindrical specimens

were used for the thermal expansion measurements, and a platinum standard specimen

was used as reference. Since yttria-doped ZrO2, MgO and YAG have cubic structures,

and it is normally assumed that these materials are isotropic, the material thermal

expansions were measured only in their component optical axis directions ([100]

direction for ZrO2 and MgO, and [111] direction for YAG). For anisotropic sapphire,

however, thermal expansions were measured not only in the optical axis direction [0001]

using the 25.4 mm-long cylindrical specimen, but also in the directions perpendicular to

its [0001] axis using the 25.4 mm diameter thin disk specimens.

Room-temperature Knoop hardness tests were conducted using a Knoop indenter

on yttra-doped ZrO2 (100), MgO (100), YAG (111) and Al2O3 (0001) surfaces, in

accordance with ASTM C1326. The load used was 500 g and dwell time was 15 seconds.

For each specimen, a total of twenty measurements were made, and average hardness

values were obtained for the materials.

The Steady-State Thermal Gradient Test and Transient Thermal Shock Test

A 3.0 kW CO2 continuous wave (wavelength 10.6 mµ ) laser was used to provide

controlled surface heating for the oxide specimens. A schematic diagram of the laser test

rig used for this high-temperature thermal gradient testing is illustrated in Figure 1. The
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CO2 laser is especially well-suited for the single crystal thermal shock tests because it can

directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are

opaque at the 10.6 mµ  wavelength of laser beam, the light energy is absorbed at the

surfaces rather than transmitting into the crystals, and thus generating the required

temperature gradients within the specimens. In order to provide more uniform heating

over the entire specimen surface, the relatively sharp raw beam with a diameter of 13 mm

was expanded to a broader beam size with a diameter of 40 mm, using a ZnSe (focal

length 63.5 mm) positive meniscus lens. The resulting laser beam profile was measured

on a PC laser beam analyzer by capturing a thermal image of a 0.5-second laser pulse.

The measured power density distribution of the expanded laser beam is shown in Figure

2. Despite of a 15% difference in the laser beam energy distribution between the peak and

valley, a fairly uniform surface heating was observed by thermography even for the 25.4

mm diameter disk specimens.

Steady-state thermal gradient tests were conducted on the thin disk specimens to

determine the critical temperature differences across the specimen thickness to initiate

cracking. A temperature gradient was established through the specimen thickness by laser

direct surface heating and backside air cooling. The laser power (thus the heat flux) was

continuously increased at a slow rate, so a pseudo-steady-state heating of the specimen

was always achieved and the temperature gradient across the specimen thickness

increased with the heating time. Since the disk specimen immediately broke off once the

crack was initiated, the onset of the cracking and fracture of the specimen was recorded as

a sudden temperature drop in the pyrometer temperature reading. The specimen failure

temperatures can be roughly controlled by adjusting the cooling. The critical temperature

difference was thus determined for each specimen at various specimen back temperatures.

The thermal gradient testing of the single crystal cylindrical specimens was also

carried out to simulate the heating/cooling cycles during the space mission. In this

experiment, indirect laser heating (by laser-heated superalloy plate thermal conduction)

was used to ensure extremely slow surface heating (Figure 1 (b)). Surface temperature
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was measured by a type-R thermocouple at the back side of the laser heated superalloy

heating plate near the specimen. Specimen cracking was monitored from a video camera

and real-time thermography images. The specimens were inspected after each cycle.

pyrometers

 3. 0  KW  CO2   High  Power  Laser

cooling air

specimen

laser beam

thermography  
system

aperture

CCD camera 
system

(a) laser direct heating (b) laser indirect heating

superalloy 
platespecimen

cooling air

laser beam

thermocouple

Fig.1 Schematic diagram showing high temperature thermal gradient testing of
candidate refractive solar concentrator oxide materials using a high power laser.
The laser power is measured using an internal power meter. The surface and
back temperatures, and temperature distributions of the specimen are monitored
by 8- mµ  pyrometers, and a  3mµ  thermography unit. Thermocouples are also
used in temperature measurements of laser indirect heating. All data are
recorded in a computer system.

Laser transient thermal shock tests were conducted on the cylindrical single

crystal specimens using a direct laser beam heating approach. Laser power was increased

in approximately 30 W increments and the specimen was heated for a total time of 60

seconds. Specimen cracking was also monitored using a video camera and real-time

thermography. The critical laser power density resulting in specimen fracture was thus

determined for each specimen. For each material, two specimens were tested and an

average critical power value was chosen. During the test, heating/cooling profiles and
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temperature distributions were experimentally measured with thermography and

pyrometry, and were also compared with the analytical solutions [4] and one-dimensional

(one–D) finite difference models described previously [5, 6].

Microstructural evidence to help explain thermal fracture behavior and failure

mechanisms of these oxide materials was examined after each test using optical and

scanning electron microscopy.
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Fig. 2 The measured power density distribution )(rq  of the expended laser beam. Note
that the power density distribution shown is normalized with respected to the
total laser power P .

EXPERIMENTAL RESULTS AND DISCUSSION

Figure 3 shows the thermal expansion behavior of the single crystal materials up

to a temperature of 1400°C. It can be seen that MgO has the highest coefficient of thermal

expansion (CTE), while sapphire has the lowest coefficient of thermal expansion (CTE).
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The average CTE values for these materials are: C- m/m106.10 6 °× −  for yttria-doped

ZrO2, C- m/m102.9 6 °× − for YAG, C- m/m108.13 6 °× −  for MgO, C- m/m109.8 6 °× −  for

Al 2O3 parallel to [0001] direction and C- m/m106.8 6 °× −  for Al2O3 perpendicular to

[0001], respectively.

Figure 4 shows the room-temperature hardness measurement results. Among these

oxides, Al2O3 has the highest hardness, whereas MgO has the lowest hardness. Yttria-

doped ZrO2 and YAG have almost equivalent hardness values. The average Knoop

hardness values are GPa39.025.11 ±  for Y2O3-doped ZrO2, GPa37.013.11 ±  for YAG,

GPa24.073.3 ±  for MgO, GPa53.001.15 ±  for Al2O3.
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Fig. 3 Thermal expansion behavior of single crystal Y2O3-doped ZrO2, YAG, MgO,
and Al2O3 (sapphire) oxides.
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Fig. 4 Knoop hardness measurement results of single crystal Y2O3-doped ZrO2, YAG,
MgO, and Al2O3 (sapphire) oxides.

Figure 5 illustrates examples of the heating profiles of the Y2O3-doped ZrO2,

YAG, and Al2O3 (sapphire) disk specimens during the laser steady-state thermal gradient

testing. The critical temperature difference and corresponding power density to cause

failure were readily determined at the onset of specimen cracking. The test results for all

the specimens are shown in Figure 6. The Y2O3-doped ZrO2 and YAG oxides exhibited a

similar thermal stress resistance, with the average critical temperature differences being

81± 20°C and 88± 21°C, respectively. In contrast, the Al2O3 oxide showed a much better

thermal stress resistance. The critical temperature difference for Al2O3 was 200± 35°C.

The Al2O3 specimens also exhibited a higher thermal stress resistance at higher

temperatures. The critical laser power densities at failure for Y2O3-doped ZrO2, YAG and

Al2O3 disk specimens were approximately 21 2W/cm , 72 2W/cm  and 177 2W/cm ,

respectively. Note that the critical power density values are corresponding to the total
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absorbed laser light energy in the crystals. Considering that thermal gradients established

in the secondary solar concentrator systems are due to the heat receiver cavity

heating/cooling cycles [3] and to a small portion of solar light energy absorbed in the

crystal components, the information obtained from this experiment can be of great

importance in component design.

Since the temperature gradient in the specimen resulting from the steady-state

heating will impose a compressive stress state in the surface region of the disk specimen,

tensile stress would usually be generated near the backside of the specimen. Crack

initiation is thus likely to occur near the back surface for the thin specimen, because

oxides are much weaker in tension than in compression. The fractographs from the

scanning microscope confirmed this type of failure. Figure 7 illustrates the Y2O3-ZrO2

case. Note that the crack origins were typically observed near the back edges of the

specimen. The critical temperature difference, T∆ , across the specimen under the steady

state heating condition is closely related to the material strength [7, 8]. It is found that the

Vickers or Knoop indentation hardness values for oxide systems are closely related to the

oxide apparent atomic volumes of oxygen, and thus, to a certain extent, are reflecting the

strength of the interatomic bonding [9]. Therefore, the critical T∆ at the low temperature

regime (e.g., below 600°C), is believed to be roughly associated with the measured room-

temperature Knoop hardness values. Sapphire (Al2O3), which has the highest hardness

value, showed the best thermal stress resistance. The increased T∆  for Al2O3 specimens

at higher temperatures may be related to possible microscale stress relaxation due to the

inelastic deformation and the reduced modulus value. Surface polish as well as edge-

preparation conditions can also dramatically affect these properties. The complicate

effects of the test temperature and specimen preparation conditions may explain the

relatively large data scatter observed in this study.
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The critical temperature difference and corresponding laser power density are
thus determined at the onset of cracking.
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(a) (b)

Fig. 7 SEM fractographs of the Y2O3-doped ZrO2 disk specimens (from two different
tests) after the laser steady-state thermal gradient testing. The cracks were
initiated near the backside of  the specimen surfaces.

Figure 8 shows the temperature profiles of the thermal gradient testing on the

single crystal cylindrical specimens under the simulated heating-cooling cycles that may

be encountered during the space mission. Maximum temperature differences achieved

across the 12.7 mm length were approximately 600°C for Y2O3-ZrO2 and YAG, and

450°C for MgO and Al2O3. The temperature gradient was predominantly parallel to the

laser heat flux direction, and approximately one-D heating was achieved, as shown in an

example of a YAG specimen temperature distribution (Figure 9). The Y2O3-ZrO2

specimen cracked during the second heating cycle. For the MgO specimen, only a small

surface crack was initiated after the first test cycle. For both cases, however, the cracks

were initiated at the surface during the heating cycle. The YAG and Al2O3 specimens did

not crack under these test conditions. The cooling cycles seemed to be less damaging for

these relatively small size specimens. The Al2O3 specimen even survived the quench test

(at a cooling rate of 658°C/min) due to the laser power loss in this particular test.
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Fig. 9 The thermography temperature distribution in a YAG specimen during the near
steady state laser heating (The surface and back side temperatures are
approximately 1232°C and 600°C, respectively). (a) Temperature contour
distribution in the specimen; (b) temperature distribution along the specimen
center region.

For a given material and heating time, the thermal stresses in the specimen

increase with the laser power density. Therefore, the critical laser power densities for

crystal failure can be determined by laser thermal shock tests under well-controlled

transient heating conditions. The results of the laser thermal shock tests showed that the

critical power densities at failure were approximately 15.3 2W/cm , 56.9 2W/cm , 39.1

2W/cm  and 109.4 2W/cm  for Y2O3-ZrO2, YAG, MgO and Al2O3 (sapphire) cylindrical

specimens, respectively. The Al2O3 showed the best thermal shock resistance of all the

oxide materials tested. The good thermal shock resistance of sapphire is attributed to its

high strength, high thermal conductivity and low thermal expansion coefficient.

The failure modes of the single crystal oxides under laser transient thermal shock

conditions are relatively complex. From the experiments, it was observed that, for the

materials with low thermal conductivity and high thermal expansion, such as Y2O3-ZrO2
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and MgO, the surface cracks could be readily initiated by high compressive stresses

and/or the compressive stress-induced (resolved) shear stresses. On the other hand, for the

materials with high thermal conductivity and low thermal expansion, such as Al2O3 and

YAG, the cracks are more likely initiated deep in the crystals. Figure 10 illustrates the

thermography temperature distributions of YAG and Al2O3 during the laser heating, and

the crystal cracking observed in the middle of the cylindrical specimens. Note that a large

crack developed in the Al2O3 specimen, causing a strong reflection in the thermography

image. Therefore, the thermography temperature reading near the crack is no longer valid.

Figure 11 illustrates the crack and fracture morphologies of the single crystal oxides after

the laser transient thermal shock testing.

For the purpose of demonstration, the stresses in the 12.7 mm long cylindrical

specimens have been estimated at the critical laser power densities, based on the

temperature distributions measured by thermography and a one-D heat transfer model and

under the assumed biaxial stress condition. The material properties used in calculations

are listed in Table 1. The results are illustrated in Figure 12. Note that for the much

thicker specimen under the transient heating conditions, the stress distributions in the

specimen are different from those in the thin specimen case described earlier. In the thick

specimen case, after heating up the crystal, a high compressive stress is developed near

the surface. The surface compressive stress decreases with the heating time. However, the

tensile stress in the inner layer of the crystal increases with time (Figure 12). The peak

tensile stress quickly reaches the maximum value and remains almost constant, but it

shifts towards the surface for longer time. The backside of the specimen is in

compression. It is believed that the surface compressive stress and near-surface tensile

stresses are responsible for the observed crystal failures under the laser transient heating

conditions.
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Table 1.  The material properties (average values in the temperature range of  25°C to

1000°C) [7, 10-12] used in thermal stress calculations

Materials Density,
g/cm3

Heat

capacity pC ,

J/g-K

Thermal
conductivity ,

W/cm-K

Thermal
expansion

coefficient
α , m/m-K

Young’s
modulus,

Ε
GPa

Poission’s
ratio,ν

ZrO2-

Y2O3

5.236 0.582 0.02 6106.10 −× 210 0.25

YAG 4.554 0.612 0.082 6102.9 −× 277.5 0.25

MgO 3.585 1.005 0.052 6107.13 −× 245 0.3

Al2O3 3.38 1.15 0.12 6106.8 −× 380 0.22
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Fig. 10 The temperature distributions in YAG and Al2O3 specimens during the laser
thermal shock testing after 50 sec heating at the critical laser powers. (a and b)
Temperature contour and line distributions in YAG; (c and d) temperature
contour and line distributions in Al2O3.
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(a) (b)

(c) (d)

Fig. 11 The crack and fracture morphologies (optical microscopy) of the single crystal
oxides after the laser thermal transient testing. (a) Surface initiated cracks and
the subsequent crack propagation in ZrO2-Y2O3; (b) surface shear stress initiated
cleavage along the (110) plane in MgO; (c) the cracked surface in the middle of
the YAG specimen;  (d) the cracked surface in the middle of the Al2O3

specimen.
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Fig. 12 The modeled thermal stress distributions in the 12.7 mm long cylindrical
specimens during laser transient thermal shock testing at the critical laser power
densities.
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Fig. 12 (Continued) The modeled thermal stress distributions in the 12.7 mm long
cylindrical specimens during laser transient thermal shock testing at the critical
laser power densities.
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CONCLUDING REMARKS

A laser thermal shock test approach has been proposed for evaluating thermo-

mechanical stability of single crystal oxide refractive concentrator materials under

simulated mission conditions. This technique is especially useful in determining the

thermal stress resistance of single crystal oxides under steady state and transient thermal

heating, thus providing vital information for the component design and material

development.

Thermal shock resistance of several candidate single crystal oxide concentrator

materials, namely yttria-stabilized zirconia, yttrium aluminum garnet and magnesium

oxide and sapphire was investigated. The experiments showed that the single crystal

sapphire can sustain the highest temperature gradient and heating-cooling rate, as

compared to the other oxides, thus exhibiting the best thermal shock resistance.
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